Energy transition or extractivism transition to Panama?

¿Transición energética o transición extractivista para Panamá?

##plugins.themes.bootstrap3.article.main##

Abstract

In accordance with the provisions of Articles 257 and 290 of the Political Constitution of the Republic of Panama and the mining situation in the country, it is necessary to analyze the current intentions of the mining sector within the framework of the negotiations that it wishes to carry out with the incoming Government. The growing need for renewable infrastructure such as solar panels, wind turbines and hydropower, coupled with transport by electric vehicles, requires the use of minerals and metals, which are predominantly extracted from developing countries in Africa, Asia and Latin America, due to their concentrated holdings of tin, gold, cobalt, niobium, copper and platinum.

Downloads

Download data is not yet available.

Publication Facts

Metric
This article
Other articles
Peer reviewers 
2
2.4

Reviewer profiles  N/A

Author statements

Author statements
This article
Other articles
Data availability 
N/A
16%
External funding 
No
32%
Competing interests 
N/A
11%
Metric
This journal
Other journals
Articles accepted 
28%
33%
Days to publication 
328
145

Indexed in

Editor & editorial board
profiles
Publisher 
Instituto de Estudios Democráticos

##plugins.themes.bootstrap3.article.details##

Author Biographies / See

Javier Amir Hurtado Yow, Universidad de Cornell: Ítaca

Es biólogo ambiental y educador con experiencia en ciencias ambientales relacionadas con los derechos humanos. Es Docente de la Universidad de Panamá, en el Centro Regional Universitario de Colón. Sus objetivos giran en torno a la mejora de las capacidades en la gestión de los recursos naturales y el medio ambiente con un enfoque en los derechos humanos en la zona interoceánica del Canal de Panamá. Además, crear y desarrollar iniciativas y políticas que mejoren la sostenibilidad de las condiciones socioeconómicas y ambientales en provincias fuera de la capital del país, incluyendo Colón, Panamá Occidental y otras regiones. Su enfoque se centra en la gestión de áreas protegidas, el tratamiento de residuos sólidos y aguas residuales que afectan a las áreas protegidas (marinas) y los procesos de restauración de ecosistemas en regiones fuertemente influenciadas por actividades antropogénicas.

Mira Grace DeGregory, Cornell en Ithaca

Es estudiante de Desarrollo Global en la Universidad de Cornell en Ithaca, Nueva York, Estados Unidos, fue Asistente de Investigación para uno de los becarios del Programa de Becas Fulbright Humphrey. Le apasiona profundamente resolver las injusticias ambientales globales y avanza firmemente hacia una carrera en derecho ambiental internacional. En su actual licenciatura en Desarrollo Global, está siguiendo a profesores de todo el mundo que trabajan para las Naciones Unidas y el Grupo Intergubernamental de Expertos sobre el Cambio Climático, en quienes se inspira para seguir una trayectoria profesional similar. DeGregory está buscando pasantías y becas adyacentes en el extranjero para ampliar su conocimiento sobre temas de desarrollo, específicamente los derechos a la tierra y los derechos indígenas en América Latina.

References

Anstee, S., Ekstrom, J., Pilgrim, J., Rabenantoandro, J., Ramanamanjato, J., Randriatafika, F., Temple, H., & Vincelette, M. (2012). Forecasting the path towards a net positive impact on biodiversity for Rio Tinto QMM. https://www.semanticscholar.org/paper/Forecasting-the-path-towards-a-net-positive-impact-Anstee-Ekstrom/63e53bfb81dabfa195d2823d6e48421e38b2e2b6

Asnani, N. (2022). Effectiveness of Sustainability Disclosures in the Mining and Metals Sector –a Critical Analysis. https://dash.harvard.edu/handle/1/37373374

Aung, T. S., Shengji, L., & Condon, S. (2019). Evaluation of the environmental impact assessment (EIA) of Chinese EIA in Myanmar: Myitsone Dam, the Lappadaung Copper Mine and the Sino-Myanmar oil and gas pipelines. Impact Assessment and Project Appraisal, 37(1), 71–85. https://doi.org/10.1080/14615517.2018.1529948 DOI: https://doi.org/10.1080/14615517.2018.1529948

Braun, A. B., Trentin, A. W. da S., Visentin, C., & Thomé, A. (2020). Relevance of sustainable remediation to contaminated sites manage in developed and developing countries: Case of Brazil. Land Use Policy, 94, 104533. https://doi.org/10.1016/j.landusepol.2020.104533 DOI: https://doi.org/10.1016/j.landusepol.2020.104533

Castillo, S., de la Rosa, J. D., Sánchez de la Campa, A. M., González-Castanedo, Y., Fernández-Caliani, J. C., Gonzalez, I., & Romero, A. (2013). Contribution of mine wastes to atmospheric metal deposition in the surrounding area of an abandoned heavily polluted mining district (Rio Tinto mines, Spain). Science of The Total Environment, 449, 363–372. https://doi.org/10.1016/j.scitotenv.2013.01.076 DOI: https://doi.org/10.1016/j.scitotenv.2013.01.076

Chan, D. S. W., & Pun, N. (2020). Renegotiating Belt and Road cooperation: Social resistance in a Sino–Myanmar copper mine. Third World Quarterly, 41(12), 2109–2129. https://doi.org/10.1080/01436597.2020.1807928 DOI: https://doi.org/10.1080/01436597.2020.1807928

Craig, M. (2015). Year Two of the Long-term Assessment of Mining Impacts.

De Chassy, A. B., Chehab, N., & Cipollitti, R. (2016). Year Three of the Long Term Mining Monitoring Project.

De Wet, & Sidu. (2013). Reliable Mine Water Technology. Mine Water and the Environment, 29(2), 85–91. https://doi.org/10.1007/s10230-010-0111-7 DOI: https://doi.org/10.1007/s10230-010-0111-7

El Bizri, H. R., Macedo, J. C. B., Paglia, A. P., & Morcatty, T. Q. (2016). Mining undermining Brazil’s environment. Science, 353(6296), 228–228. https://doi.org/10.1126/science.aag1111 DOI: https://doi.org/10.1126/science.aag1111

Freitas, C. M., & da Silva, M. A. (2020). Work accidents which become disasters: Mine tailing dam failures in Brazil. Revista Brasileira de Medicina Do Trabalho, 17(1), 21–29. https://doi.org/10.5327/Z1679443520190405 DOI: https://doi.org/10.5327/Z1679443520190405

Guerra, M. B. B., Teaney, B. T., Mount, B. J., Asunskis, D. J., Jordan, B. T., Barker, R. J., Santos, E. E., & Schaefer, C. E. G. R. (2017). Post-catastrophe Analysis of the Fundão Tailings Dam Failure in the Doce River System, Southeast Brazil: Potentially Toxic Elements in Affected Soils. Water, Air, & Soil Pollution, 228(7), 252. https://doi.org/10.1007/s11270-017-3430-5 DOI: https://doi.org/10.1007/s11270-017-3430-5

Hilson, G., & Haselip, J. (2004). The environmental and socioeconomic performance of multinational mining companies in the developing world. Minerals & Energy, 19(3), 25–47. DOI: https://doi.org/10.1080/14041040410027318

Kim, T. Y., Gould, T., Bennet, S., Briens, F., Dasgupta, A., Gonzales, P., ... & Schulz, R. (2022). The role of critical minerals in clean energy transitions. International Energy Agency: Washington, DC, USA, 70-71.

Lawler, A. (2010). Copper Mine Threatens Ancient Monastery in Afghanistan. Science, 329(5991), 496–497. https://doi.org/10.1126/science.329.5991.496 DOI: https://doi.org/10.1126/science.329.5991.496

McKay, T. J. M., & Milaras, M. (2017). Public lies, private looting and the forced closure of Grootvlei Gold Mine, South Africa. The Journal for Transdisciplinary Research in Southern Africa, 13(1), Article 1. https://doi.org/10.4102/td.v13i1.347 DOI: https://doi.org/10.4102/td.v13i1.347

Meyer, N. F., Moreno, R., Reyna-Hurtado, R., Signer, J., & Balkenhol, N. (2020). Towards the restoration of the Mesoamerican Biological Corridor for large mammals in Panama: comparing multi-species occupancy to movement models. Movement ecology, 8, 1-14. DOI: https://doi.org/10.1186/s40462-019-0186-0

Milaras, M., McKay, T., & Ahmed, F. (2014, October 1). Mine closure in South Africa: A survey of current professional thinking and practice. https://doi.org/10.13140/RG.2.1.3599.3765

Naryono, E. (2023). Nickel Mine Exploitation In Indonesia, Between A Blessing And A Disaster Of Environmental Damage. https://doi.org/10.31219/osf.io/y58qe DOI: https://doi.org/10.31219/osf.io/y58qe

Nursaputra, M., Larekeng, S. H., Nasri, N., Hamzah, A. S., Mustari, A. S., Arif, A. R., Ambodo, A. P., Lawang, Y., & Ardiansyah, A. (2021). Pemanfaatan Penginderaan Jauh Dalam Penilaian Keberhasilan Reklamasi di Lahan Pasca Tambang PT. Vale Indonesia. Jurnal Pengelolaan Sumberdaya Alam Dan Lingkungan (Journal of Natural Resources and Environmental Management), 11(1), 39–48. https://doi.org/10.29244/jpsl.11.1.39-48 DOI: https://doi.org/10.29244/jpsl.11.1.39-48

Quinn, C., & Pouliot, J. (2014). Long-term Monitoring Impact Assessment of Mining Activity in Panama. McGill University.

Radley, B., & Geenen, S. (2021). Struggles over value: Corporate–state suppression of locally led mining mechanisation in the Democratic Republic of the Congo. Review of African Political Economy, 48(168). https://doi.org/10.1080/03056244.2020.1865902 DOI: https://doi.org/10.1080/03056244.2020.1865902

Rickard, S. (2020). Gender, agency and decision making in community engagement: Reflections from Afghanistan’s Mes Aynak Mine. The Extractive Industries and Society, 7(2), 435–445. https://doi.org/10.1016/j.exis.2019.11.001 DOI: https://doi.org/10.1016/j.exis.2019.11.001

Simmonds, J., Gómez, J. A., & Ledezma, A. (2018). Knowledge inference from a small water quality dataset with multivariate statistics and data-mining. In Advances in Information and Communication Technologies for Adapting Agriculture to Climate Change: Proceedings of the International Conference of ICT for Adapting Agriculture to Climate Change (AACC'17), November 22-24, 2017, Popayán, Colombia (pp. 1-15). Springer International Publishing. DOI: https://doi.org/10.1007/978-3-319-70187-5_1

Simmonds, J., Gómez, J. A., & Ledezma, A. (2018). Statistical and Data Mining Techniques for Understanding Water Quality Profiles in a Mining-Affected River Basin. In International Journal of Agricultural and Environmental Information Systems. Volume 9, Issue 2 (pp 1-19). April-June 2018 DOI: https://doi.org/10.4018/IJAEIS.2018040101

Song, Y., Hou, D., Zhang, J., O’Connor, D., Li, G., Gu, Q., Li, S., & Liu, P. (2018). Environmental and socio-economic sustainability appraisal of contaminated land remediation strategies: A case study at a mega-site in China. Science of The Total Environment, 610–611, 391–401. https://doi.org/10.1016/j.scitotenv.2017.08.016 DOI: https://doi.org/10.1016/j.scitotenv.2017.08.016

Strand, R., Crippen, K., Ltd, B., & Usher, B. (2010). Integrated water balance and water quality modelling for mine closure planning at Antamina. https://www.semanticscholar.org/paper/Integrated-water-balance-and-water-quality-for-mine-Strand-Crippen/69f349ac7cfddb4741679c28b85c383cac87c0c4

UNEP. (2024, February 19). What are energy transition minerals and how can they unlock the clean energy age? UNEP. http://www.unep.org/news-and-stories/story/what-are-energy-transition-minerals-and-how-can-they-unlock-clean-energy-age

UNFCCC. (2023). COP28 Agreement Signals “Beginning of the End” of the Fossil Fuel Era | UNFCCC. https://unfccc.int/news/cop28-agreement-signals-beginning-of-the-end-of-the-fossil-fuel-era

Wellhofer. (1988). Models of Core and Periphery Dynamics. https://doi.org/10.1177/0010414088021002005 DOI: https://doi.org/10.1177/0010414088021002005

OJS System - Metabiblioteca |